Let $1 < p < \infty$. If $(f_n)$ is a sequence in $L^p(\Omega)$ satisfying
- $f_n(x) \to f(x)$ a.e.,
- $\|f_n\|_p \to \|f\|_p$,
then does it follow that $\|f_n - f\|_p \to 0$?
Edit. Here is my solution.
For $A \subseteq \Omega$,\begin{align*}\|f_n - f\|_q & \le \|f_n - f\|_{u,\,\Omega - A}|\Omega - A|^{1\over q} + |A|^{{1\over q} - {1\over p}}\|f_n - f\|_p \\ & \le \|f_n - f\|_{u,\,\Omega - A}|\Omega - A|^{1\over q} + 2|A|^{{1\over q} - {1\over p}} \sup \|f_n\|_p \\ & \le \|f_n - f\|_{u,\,\Omega - A} |\Omega - A|^{1\over q} + 2M|A|^{{1\over q} - {1\over p}},\end{align*}where the second line follows by Fatou's lemma. By Egorov's theorem, we can choose $A$ arbitrarily small such that $f_n \rightrightarrows f$ on $\Omega - A$, so we are done.
I was wondering if anyone had any alternative solutions to this problem?