Your function $f$ may be rewritten as a Clausen function or the imaginary part of a polylogarithm :
$$\tag{1}f(x)=\operatorname{S}_{1/2}(x)=\Im{\,\operatorname{Li}_{\,1/2}(e^{ix})}$$
(since the polygarithm is defined as $\;\displaystyle\operatorname{Li}_{s}(z)=\sum_{n=1}^\infty \frac {z^n}{n^s}\;$)
We may then use the DLMF expansion in $\,\log(z)=ix$ applied at $s=\frac 12$ :
\begin{align}
\operatorname{Li}_{s}(e^{ix})&=\Gamma(1-s)(-ix)^{s-1}+\sum_{n=0}^\infty\zeta(s-n)\frac{(ix)^n}{n!}\\
\tag{2}\operatorname{Li}_{1/2}(e^{ix})&=\sqrt{\pi}(-ix)^{-1/2}+\sum_{n=0}^\infty\zeta\left(\frac 12-n\right)\frac{(ix)^n}{n!}\\
\end{align}
to get the equivalence (as obtained by Winther) by taking the imaginary part as $x\to 0$ :
$$\tag{3}f(x)\sim\sqrt{\frac{\pi}{2\,x}},\quad x\to 0$$
and the expansion (keeping only the terms $n=2k+1$) :
$$\tag{4}f(x)=\sqrt{\frac{\pi}{2\,x}}+\sum_{k=0}^\infty\zeta\left(-\frac 12-2k\right)\frac{(-1)^k\,x^{2k+1}}{(2k+1)!}$$