Prove that $\cos{2\alpha}+\cos{4\alpha}+\cdots+\cos{2n\alpha} = \dfrac{\sin{(n+1)\alpha}\cos{n\alpha}}{\sin{\alpha}}-1$.
What is wrong with this proof?
Let $S = \cos{2\alpha}+\cos{4\alpha}+\cdots+\cos{2n\alpha}$. Then, $$S\sin{\alpha} = \sin{\alpha}\cos{2\alpha}+\sin{\alpha}\cos{4\alpha}+\cdots+\sin{\alpha}\cos{2n\alpha}$$
$$S\sin{\alpha} = \dfrac{1}{2}\left[\left (\sin{\dfrac{3\alpha}{2}-\sin{\dfrac{1}{2}\alpha}}\right )+\left(\sin{\dfrac{5\alpha}{2}}-\sin{\dfrac{3}{2}\alpha} \right)+\cdots\right] = \dfrac{\sin{\dfrac{\alpha(n+1)}{2}-\sin \left (\dfrac{1}{2}\alpha \right)}}{2}.$$
Thus, $$S = \dfrac{\sin{\dfrac{\alpha(n+1)}{2}-\sin \left (\dfrac{1}{2}\alpha \right)}}{2\sin{\alpha}}.$$
According to my answer key, the answer is $$\dfrac{\sin{(n+1)\alpha \cos{n\alpha}}}{\sin{\alpha}}-1.$$
Did I make an error somewhere?
Edit: I made a mistake with the $\sin(x)-\sin(y)$ formula above. I should say the following: $$S\sin{\alpha} = \sin{\alpha}\cos{2\alpha}+\sin{\alpha}\cos{4\alpha}+\cdots+\sin{\alpha}\cos{2n\alpha} = \dfrac{1}{2}\left[\left (\sin{3\alpha-\sin{\alpha}}\right )+\left(\sin{5\alpha}-\sin{3\alpha} \right)+\cdots\right] = \dfrac{\sin{(2n+1)-\sin(\alpha)}}{2}.$$
Thus, $S = \dfrac{\sin{(2n+1)\alpha-\sin(\alpha)}}{2\sin{\alpha}}.$
$$\sin x\cos y=\frac{1}{2}\left(\sin(x+y)+\sin(x-y)\right)=\frac{1}{2}\sin(x+y)-\frac{1}{2} \sin(y-x)$$ Implies \begin{align} S\sin \alpha&=\sum_{k=1}^n\left[\frac{1}{2}\sin\left(2k+1\right)\alpha-\frac{1}{2} \sin\left(2k-1\right)\alpha\right] \end{align} Which is telescopic.
– Ángel Mario Gallegos Jan 10 '16 at 04:11