Evaluate $$\lim_{n \to \infty} \frac{1}{n}[(n +1)(n+2) \cdots (n+n)]^{\frac{1}{n}}$$
We can write as $\displaystyle\lim_{n \to \infty} \frac{1}{n}[(n +1)(n+2) \cdots (n+n)]^{\frac{1}{n}}$ $$= \lim_{n \to \infty}\left[\frac{(n +1)(n+2) \cdots (n+n)}{n^n}\right]^{\frac{1}{n}} = \lim_{n \to \infty}\left[(1+\frac{1}{n})(1+\frac{2}{n})\cdots (1+\frac{n}{n})\right]^{\frac{1}{n}}$$
I have used this result if $\{a_n\}$ is a sequence of positive term which is convergent to $l$ and $b_n = (a_1. a_2 . \cdots a_n)^{1/n}$ ,thhen $b_n$ converges to $l$
here $a_n = 2$, but i think it is not right,how to use this result in this question. Give me hint how to proceed . Thank you