Giving a coordinate system $x$ in which $\Gamma^c _{i j}=0$ at ${x=0}$ and $g_{ij}=\delta^j_i$, where is $\Gamma^c _{i j}$ is the Christoffel symbol of the second kind. We can construct another coordinate system $x'$ in which at $x'=0$ $\Gamma'^c _{i j}=0$ , $\Gamma'^c _{i j,v}+\Gamma'^c _{i v,j}+\Gamma'^c _{j v,i}=0$and $g'_{ij}=\delta^j_i$ or in general $$\sum_{cyc}\Gamma'^c _{i j,klmn..}=0$$ using series expansion.
Let $x=\{x^1,x^2,x^3,x^4\}$ ,$b^{u}_{\alpha \beta k}=\frac{1}{6}\Gamma^{u}_{\alpha \beta k}|_{x=0}$ and using Einstein's summation notation
$$\tag{$1$} x^{'u}=x^{u}+b^{u}_{\alpha \beta , k}x^{\alpha}x^{\beta}x^{k} +C^{u}_{\alpha \beta k m}x^{\alpha}x^{\beta}x^{k}x^{m}+ ...... $$
$$\delta^u_i=\frac {\partial x^{u}}{\partial x'^{i}}|_{x=0}$$
$$\frac {\partial^2 x^{u}}{\partial x'^{i} \partial x'^{j}}|_{x=0}=0$$
$$-2(b^{u}_{i jv} +b^{u}_{i vj}+b^{u}_{jvi})=\frac {\partial^3 x^{u}}{\partial x^{'i} \partial x^{'j} \partial x^{'v}}|_{x=0}$$
$$3\frac {\partial^3 x^{u}}{\partial x^{'i} \partial x^{'j} \partial x^{'v}}|_{x=0}=-(\Gamma^u _{i j,v}+\Gamma^u _{i v,j}+\Gamma^u _{j v,i})$$
Now the Christoffel symbol transforms as:
$$\tag{$2$} \Gamma^{'u}_{\nu\kappa} = {\partial x^{'u} \over \partial x^\alpha} \left [ \Gamma^\alpha_{\beta \gamma}{\partial x^\beta \over \partial x^{'\nu}}{\partial x^\gamma \over \partial x^{'\kappa}} + {\partial ^2 x^\alpha \over \partial x^{'\nu} \partial x^{'\kappa}} \right ]$$
$$ \Gamma^{'u}_{\nu\kappa} = {\partial x^{'u} \over \partial x^\alpha} \left [ \Gamma^\alpha_{\beta \gamma}{\partial x^\beta \over \partial x^{'\nu}}{\partial x^\gamma \over \partial x^{'\kappa}}|_{x=0} + {\partial ^2 x^\alpha \over \partial x^{'\nu} \partial x^{'\kappa}}|_{x=0} \right ]=0$$
since covariant derivative of $g'_{uv}$ is $0$, this implies $\frac {\partial g'_{uv}}{\partial x^{'i}}|_{x=0}=0$
Also $g_{uv}$ transforms as :
$$g_{uv}^{'}=\frac {\partial x^i}{\partial x^{'u}}\frac {\partial x^j}{\partial x^{'v}}g_{ij}$$
$$g_{uv}^{'}=g_{uv}|_{x=0}=\delta^u_v$$
taking partial derivative of equation 2 at $x=0$:
$$\Gamma^{'u}_{\nu\kappa,a} = {\partial x^{'u} \over \partial x^\alpha} \left [ \Gamma^\alpha_{\beta \gamma ,c}{\partial x^\beta \over \partial x^{'\nu}}{\partial x^\gamma \over \partial x^{'\kappa} }\frac{\partial x^c }{\partial x'^a}+ {\partial ^3 x^\alpha \over \partial x^{'\nu} \partial x^{'\kappa} \partial x'^a} \right ]$$
$$\Gamma^{'u}_{\nu\kappa,a} = {\partial x^{'u} \over \partial x^\alpha} \left [ \Gamma^\alpha_{vk,a}+ {\partial ^3 x^\alpha \over \partial x^{'\nu} \partial x^{'\kappa} \partial x'^a} \right ]$$
$$\Gamma^{'u}_{\nu\kappa,a}+\Gamma^{'u}_{\nu a,\kappa}+\Gamma^{'u}_{\kappa a,\nu}={\partial x^{'u} \over \partial x^\alpha} \left [ \Gamma^\alpha_{vk,a}+ \Gamma^{u}_{\nu a,\kappa}+\Gamma^{u}_{\kappa a,\nu}+3{\partial ^3 x^\alpha \over \partial x^{'\nu} \partial x^{'\kappa} \partial x'^a} \right ]=0$$
if you want $$\sum_{cyc}\Gamma'^u_{ij,km}=0$$ we end up with $$C^{u}_{ijkm}=\frac{\Gamma^u_{ij,km}}{4!}=\frac{\Gamma^u_{ij,km}}{24}$$
Therefore equation 1 becomes :
$$x^{'u}=x^{u}+\frac{\Gamma^{u}_{\alpha \beta , k}}{3!}x^{\alpha}x^{\beta}x^{k} +\frac{\Gamma^{u}_{\alpha \beta , k m}}{4!}x^{\alpha}x^{\beta}x^{k}x^{m}+ ...... $$