Hint $ $ to invert $\,\rm a-xf,\,$ scale it by $\,\rm \color{#c00}{b=a^{-1}}\,$ so it's $\rm\color{darkorange}{monic}$, then use a $\rm\color{#0a0}{geometric \ series}$
$\rm\displaystyle\ \qquad 1\: =\: (a-xf)(b-xg)\ \Rightarrow\ \color{#c00}{ab=1}$
$\qquad\ \ \ \Rightarrow\ \ \displaystyle\rm\frac{1}{a-xf}\ = \dfrac{b}{\color{#c00}b(\color{#c00}a-xf)}\ =\ \frac{b}{\color{darkorange}{\bf 1}-bxf}\ =\ b\:(\overbrace{1+bxf+(bxf)^2+(bxf)^3+\:\cdots\:}^{\large \color{#0a0}{\text{geometric series}}})$
which converges since $\rm \,(bxf)^n\,$ has order $\to \infty\,$ as $\rm\,n\to\infty\,$ (see this answer for much more on the (oft-misunderstood) topic of convergence of formal power series).
Corollary $ $ When $R$ is a field the fraction field of $R[[x]]$ has Laurent form, i.e. every fraction can be written with denominator $\rm\,x^n,\,$ by $\rm\,g/h = g/(x^n(a\!-\!xf)) = gh'/x^n\,$ for $\rm\, h'\! = (a\!-\!xf)^{-1}\!\in R[[x]]$