I have a question related to the implications of a zero second moment conditions. Consider a real-valued random variable $X$ defined on the probability space $(\Omega, \mathcal{F}, P)$. As we can read here, $E(X^2)=0 \rightarrow E(X)=0$.
If we keep to write the implications, we have $E(X^2)=0 \rightarrow E(X)=0\rightarrow Var(X)=0\leftrightarrow X(\omega)=K \text{ }\forall \omega \in \Omega, K \in \mathbb{R} \leftrightarrow E(X)=X$
Can we conclude that $E(X^2)=0 \rightarrow X=0$?