Find all functions $f:\mathbb{R}\to{\mathbb{R}}$ such that
$f(x+y)+f(x)f(y)=f(xy)+f(x)+f(y)$ for all $x,y\in{\mathbb{R}}$
first I put $x=y=0$ so I got $f(0)=0$ or $f(0)=2$.
For the case $f(0)=2$, putting $y=0$, I got $f(x)=2$ for all real $x$.
For the case $f(0)=0$ I am not able to proceed. Pre-calculus method is preferred.