1

How can I compute the limit of the following series :$ \sum \frac{1}{(3k)!} $?

kosskor
  • 27

1 Answers1

2

Consider decimation of the series $f(z) = \sum_{k \ge 0} a_k z^k$. Call $\omega = \mathrm{e}^{\frac{2 \pi \mathrm{i}}{m}}$, a primitive $n$-th root of 1. It is easy to check that:

$\begin{align} \sum_{0 \le k < m} \omega^{r k} = \begin{cases} m & m \mid r \\ 0 & \text{otherwise} \end{cases} \end{align}$

Thus:

$\begin{align} \sum_{0 \le r < m} f(z \omega^r) &= \sum_{0 \le r < m} \sum_{k \ge 0} a_k z^k \omega^{r k} \\ &= \sum_{k \ge 0} a_k z^k \sum_{0 \le r < m} \omega^{r k} \\ &= m \sum_{k \ge 0} a_{k m} z^{k m} \end{align}$

Your series is nothing but:

$\begin{align} \frac{e^{\omega x}}{3} \end{align}$

with $\omega = \mathrm{e}^{\frac{2 \pi \mathrm{i}}{3}}$

vonbrand
  • 27,812