Consider $a=11\ldots 1 $ with $2016$ ones .
Take the numbers $11\ldots100\ldots 0=10^k \cdot a$ and $11\ldots120\ldots 0 =10^k \cdot (a+1)$ .
I'll show that between them there is some number of the form $n^{2016}$ for a sufficiently big $k$ which will prove the claim .
For such a power to exist it's sufficiently that :
$$\sqrt[2016]{10^k \cdot (a+1) }-\sqrt[2016]{10^k \cdot a} > 1$$
Denote these numbers with $x$ and $y$ .
Now use the well-known formula :
$$x-y=\frac{x^{2016}-y^{2016}}{x^{2015}+x^{2014}y+\ldots+y^{2015}}$$
Let's make a trivial bound on the denominator using $y<x$ :
$$x^{2015}+x^{2014}y+\ldots+y^{2015}<x^{2015}+x^{2015}+\ldots+x^{2015}=2016 x^{2015}$$
Also note that $$x^{2016}-y^{2016}=10^k(a+1-a)=10^k$$
Using all these we can achieve the bound :
$$x-y >\frac{10^k}{2016x^{2015}}$$
We want $x-y > 1$ so let's try to see if $$\frac{10^k}{2016x^{2015}} \geq 1$$
Raise this to the $2016$-th power :
$$10^{2016k} \geq 2016^{2016} \cdot 10^{2015k} \cdot (a+1)^{2015}$$
$$10^k \geq 2016^{2016} \cdot (a+1)^{2015}$$ which is true for a very big $k$ because on the RHS there is a constant number .
This means that there are an infinitely many powers $n^{2016}$ which begin with $2016$ ones .