For convenience, define some variables which are easier to type $$\eqalign{
M &= \Sigma^{-1} \cr
z &= (\mu-x) \cr
}$$
Now let's answer your second question first.
Rewrite the function in terms of the above variables and the Frobenius (:) product and find its differential
$$\eqalign{
f &= z^TMz \cr
&= M:z\,z^T \cr\cr
df &= M:(dz\,z^T+z\,dz^T) + zz^T:dM \cr
&= Mz:dz + z^TM:dz^T - zz^T:M\,d\Sigma\,M \cr
&= Mz:dz + M^Tz:dz - M^Tzz^TM^T:d\Sigma \cr
&= (M+M^T)\,z:dz - M^Tzz^TM^T:d\Sigma \cr
&= (M+M^T)\,(\mu-x):d\mu - M^Tzz^TM^T:d\Sigma \cr
}$$
Setting $d\Sigma=0$ yields the gradient with respect to $\mu$ as
$$\eqalign{
\frac{\partial f}{\partial \mu} &= (\Sigma^{-1}+\Sigma^{-T})\,(\mu-x) \cr
}$$
and setting $d\mu=0$ yields
$$\eqalign{
\frac{\partial f}{\partial \Sigma} &= - M^Tzz^TM^T \cr
}$$
Now back to your first function.
Let's write down its logarithm and find the differential
$$\eqalign{
L &= \frac{1}{2}\Big(\log\det(M) - f\Big) \cr
&= \frac{1}{2}\Big({\rm tr}\log(M) - f\Big) \cr\cr
dL &= \frac{1}{2}\Big(M^{-T}:dM - df\Big) \cr
&= \frac{1}{2}\Big(M^{-T}:dM - (M+M^T)\,(\mu-x):d\mu + M^Tzz^TM^T:d\Sigma\Big) \cr
&= \frac{1}{2}\Big(-M^{-T}:M\,d\Sigma\,M - (M+M^T)\,(\mu-x):d\mu + M^Tzz^TM^T:d\Sigma\Big) \cr
&= \frac{1}{2}\Big(-M^T:d\Sigma - (M+M^T)\,(\mu-x):d\mu + M^Tzz^TM^T:d\Sigma\Big) \cr
&=\frac{1}{2}(M^Tzz^TM^T-M^T):d\Sigma-\frac{1}{2}(M+M^T)\,(\mu-x):d\mu \cr
}$$
Once again, holding one of the independent variables constant yields the gradient with respect to the other
$$\eqalign{
\frac{\partial L}{\partial \mu} &= \frac{1}{2}(M+M^T)\,(x-\mu) \cr\cr
\frac{\partial L}{\partial \Sigma} &= \frac{1}{2}(M^Tzz^TM^T-M^T) \cr
}$$
To recover the gradient of the original function (let's call it $H$) simply apply the logarithmic derivative rule
$$\eqalign{
\frac{\partial H}{\partial\mu} &= H\Bigg(\frac{\partial L}{\partial\mu}\Bigg) \cr
\frac{\partial H}{\partial\Sigma} &= H\Bigg(\frac{\partial L}{\partial\Sigma}\Bigg) \cr
}$$