$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
A_{n} & \equiv
\sum_{k = 1}^{n}{n \over n^{2} + k^{2}} =
\Im\sum_{k = 0}^{n - 1}{1 \over k + 1 - n\ic} =
\Im\sum_{k = 0}^{\infty}\pars{{1 \over k + 1 - n\ic} -
{1 \over k + n + 1 - n\ic}}
\\[5mm] & =
\Im\bracks{\Psi\pars{n + 1 - n\ic} - \Psi\pars{1 - n\ic}}\,,\qquad\qquad
\pars{~\Psi\ \mbox{is the}\ Digamma\ Function~}.
\end{align}
\begin{align}
A_{n} & =
\Im\braces{\Psi\pars{\bracks{1 - \ic}n} + {1 \over \pars{1 - \ic}n}
- \Psi\pars{-n\ic} - {1 \over -n\ic}}\quad\pars{~Recursion~}
\\[5mm] & =
-\,{1 \over 2n} +
\Im\braces{\Psi\pars{\bracks{1 - \ic}n} - \Psi\pars{-n\ic}}
\end{align}
The
Digamma Function Asymptotic Formula is given by
\begin{align}
\Psi\pars{z} & \sim
\ln\pars{z} - {1 \over 2z} - \sum_{n = 1}^{\infty}{B_{2n} \over 2n\,z^{2n}} =
\ln\pars{z} - {1 \over 2z} - {1 \over 12 z^{2}} + {1 \over 120z^{4}} -
{1 \over 252z^{6}} + \cdots
\\[5mm] & \pars{~z \to \infty\ \mbox{in}\ \verts{\,\mathrm{arg}\pars{z}} < \pi~}
\,,\qquad B_{k}\ \mbox{is a Bernoulli Number.}
\end{align}
\begin{align}
\Im\Psi\pars{\bracks{1 - \ic}n} & \sim
-\,{\pi \over 4} - {1 \over 4n} - {1 \over 24n^{2}} +
{1 \over \color{#f00}{2016}\,n^{6}} + \cdots
\\[5mm]
\Im\Psi\pars{-n\ic} & \sim
-\,{\pi \over 2} - {1 \over 2n} + \cdots
\end{align}
\begin{align}
A_{n} &\ \sim\ {\pi \over 4} - {1 \over 4n} - {1 \over 24n^{2}} + {1 \over \color{#f00}{2016}\,n^{6}} + \cdots
\\[5mm]
n\pars{{\pi \over 4} - A_{n}} &\ \sim\
{1 \over 4} + {1 \over 24n} - {1 \over \color{#f00}{2016}\,n^{5}} + \cdots
\\[5mm]
n\pars{{\pi \over 4} - A_{n}} - {1 \over 4} &\ \sim\
{1 \over 24n} - {1 \over \color{#f00}{2016}\,n^{5}} + \cdots
\\[5mm]
n\bracks{n\pars{{\pi \over 4} - A_{n}} - {1 \over 4}} &\ \sim\
{1 \over 24} - {1 \over \color{#f00}{2016}\,n^{4}} + \cdots
\\[5mm]
{1 \over 24} - n\bracks{n\pars{{\pi \over 4} - A_{n}} - {1 \over 4}} &\ \sim\
{1 \over \color{#f00}{2016}\,n^{4}} + \cdots
\\[5mm]
n^{4}\braces{%
{1 \over 24} - n\bracks{n\pars{{\pi \over 4} - A_{n}} - {1 \over 4}}} &\ \sim\
{1 \over \color{#f00}{2016}} +
\pars{~\mbox{terms of order}\ {1 \over n^{2}}~}
\end{align}
$$
\begin{array}{|c|}\hline\mbox{}\\
\ds{\quad%
\color{#f00}{\lim_{n \to \infty}{1 \over
n^{4}\braces{%
1/24 - n\bracks{n\pars{\pi/4 - A_{n}} - 1/4}}}} = \color{#f00}{2016}
\quad}
\\ \mbox{}\\ \hline
\end{array}
$$
$$\arctan((k+1)/n)-\arctan((k)/n)-n/(n^2+k^2)$$
– mrprottolo Dec 31 '15 at 17:01