Is this sum below convergent? ($P_{n}$ is the nth prime.)
$$\sum_{n=1}^{{\infty}}\frac{1}{P_{3n}}$$
Is this sum below convergent? ($P_{n}$ is the nth prime.)
$$\sum_{n=1}^{{\infty}}\frac{1}{P_{3n}}$$
The series $$\frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}+\frac{1}{p_4}+\frac{1}{p_5}+\cdots$$ diverges, by a result of Euler. If your series converged, then by Comparison so would $\sum \frac{1}{p_{3n+1}}$ and $\sum \frac{1}{p_{3n+2}}$, and therefore so would Euler's series.
Another way is to use the Prime Number Theorem, that tells us $$p_{n}\sim n\log\left(n\right)$$ and so $$\sum_{n\geq1}\frac{1}{p_{3n}}\sim\frac{1}{3}\sum_{n\geq2}\frac{1}{n\left(\log\left(n\right)+\log\left(3\right)\right)}\sim\frac{1}{3}\sum_{n\geq2}\frac{1}{n\log\left(n\right)}$$ and the RHS diverges.