2

Consider $\ell_{n} \in C[0,1]^{'}$ s.t $\ell_{n}(f)=\frac{1}{n} \sum_{k=0}^{n-1}f(\frac{k}{n})$, does $\ell_{n}$ converge in norm to Riemann integation?

I think yes; since every contionous function is Riemann integable, thus $\lim_{n} \sup_{\mid x\mid=1} | \ell_{n} - R | = 0$

user123124
  • 1,835

1 Answers1

1

The answer is NO.

Let $\,f_n(x)=\lvert\sin(2\pi n x)\rvert$. Then $\max_{x\in[0,1]}\lvert\,f(x)\rvert=1$, $\,\ell(\,f)=\int_0^1 f_n(x)\,dx=\frac{2}{\pi}$, while $\ell_n(\,f_n)=0$.