Let $V$ be a finitely generated inner product space above $\mathbb{F}$. Denote by ${\rm End}\left(V\right)$ the space linear transformations $V\to V$. For $A\subseteq{\rm End}\left(V\right)$ Denote $$C\left(A\right)=\left\{ X\in{\rm End}\left(V\right)|X\circ S=S\circ X\quad\forall S\in A\right\} $$
For $S\in{\rm End}\left(V\right)$, denote $C\left(S\right)=C\left(\left\{S\right\} \right)$ and denote
$${\rm Pol}\left(S\right)=\left\{ p\left(S\right):p\in\mathbb{F}\left[t\right]\right\} $$
Show that if $S$ is diagonalizable then ${\rm Pol}\left(S\right)=C\left(C\left(S\right)\right)$.
I know that is $S$ has distinct eigenvalue then any transformation in $C(S)$ must be a polynomial in $S$, but apart from that I'm not really sure how to proceed.
One side I was able to do:
• $(\subseteq )$
Let $p\in\mathbb{F}\left[t\right]$, then $p\left(S\right)\in{\rm Pol}\left(S\right)$ and we need to prove $p\left(S\right)\in C\left(C\left(S\right)\right)$, that is, for all $T\in C\left(S\right)$ we want to prove that $p\left(S\right)\circ T=T\circ p\left(S\right)$. Let $T\in C\left(S\right)$. Then by definition $T\circ S=S\circ T$. Then $$p\left(S\right)\circ T=\left(\sum_{i=0}^{n}a_{i}S^{i}\right)\circ T=\sum_{i=0}^{n}a_{i}S^{i}T=\sum_{i=0}^{n}a_{i}TS^{i}=T\sum_{i=0}^{n}a_{i}S^{i}$$ as required.
A bit stuck about the other side.