What is the derivative of $$x!^{x!^{x!^{x!^{x!^{x!^{x!^{.{^{.^{.}}}}}}}}}}$$
My effort:
Let $$g(x)=x!^{x!^{x!^{x!^{x!^{x!^{x!^{.{^{.^{.}}}}}}}}}}\implies g(x)=x!^{g(x)}$$ Taking natrual log on both sides, $$\ln(g(x))=g(x)\cdot\ln(x!)$$ Differentiating, $$\frac{1}{g(x)}\cdot g'(x)=g'(x)\cdot\ln(x!)+g(x)\cdot\frac{1}{x!}\cdot x!\cdot\psi^{(0)}(x+1)$$ $$\implies g'(x)\left[\frac{1}{g(x)}-ln(x!)\right]=g(x)\cdot\psi^{(0)}(x+1)$$ So does isolating $g'(x)$ give me the correct solution? If not, how can I solve for the differential?
Edit: The gamma function is indeed implicitly assumed when the factorial function is used.