Given the solvable decic (among many in this database),
$$P(x) := x^{10} - x^9 + 5x^8 - 2x^7 + 16x^6 - 7x^5 + 20x^4 + x^3 + 12x^2 - 3x + 1$$
we have,
$$\int_{-\infty}^{\infty} \frac{x^2}{P(x)}\,dx = 2\pi\sqrt{\frac{y}{33}}$$
where $y\approx 0.005498$ is a root of the solvable $5$-real root quintic,
$$P(y):=410651^2 - 297369569963257 y + 64437688060325415 y^2 - 3213663132678906688 y^3 + 59485209442439490149 y^4 - (11^3\cdot67^2\cdot199^6) y^5 = 0$$
(Added later): A relation between the roots $x,y$ such that $P(x)=P(y)=0$ is,
$$12675353 + 84680609 x^3 + 55168143 x^6 - 6841070 x^9 - 1801451 x^{12} = (11\cdot67^2\cdot199^2) y$$
Q: In general, if, $$\int_{-\infty}^{\infty} \frac{x^2}{ P(x)}\,dx= 2\pi \sqrt{y}$$ and $P(x)$ has a solvable Galois group, is it true that $P(y)$ also has a solvable Galois group?