A good general way to prove trigonometric identities is to switch to complex representation using Euler's formula. It sometimes involves a little bit of algebra, but it's more algorithmic and requires less magical insight. We can express
$$ \cos\omega t = \frac{e^{i\omega t}+e^{-i\omega t}}{2} $$
and
$$ \sin\omega t = \frac{e^{i\omega t}-e^{-i\omega t}}{2i} $$
Then we desire to prove that
$$ \frac{a}{2}\left( e^{i\omega t}+e^{-i\omega t} \right) + \frac{b}{2i}\left( e^{i\omega t}-e^{-i\omega t} \right) = \frac{A}{2}\left( e^{i(\omega t + \phi)}+e^{-i(\omega t + \phi)} \right) $$
Rearranging, we have
$$ \left( \frac{a}{2} + \frac{b}{2i} \right)e^{i\omega t} + \left( \frac{a}{2} - \frac{b}{2i} \right)e^{-i\omega t} = \frac{A}{2}e^{i\phi}e^{i\omega t} + \frac{A}{2}e^{-i\phi}e^{-i\omega t} $$
Now, comparing terms on the left and right hand sides, we see that we will have equality if the following relations are satisfied:
$$ Ae^{i\phi} = a - bi $$
$$ Ae^{-i\phi} = a + bi $$
or, written out,
$$ A\cos\phi + iA\sin\phi = a - bi $$
$$ A\cos\phi - iA\sin\phi = a + bi $$
We may equate the real and imaginary parts of the foregoing expressions. Both furnish the following:
$$ A\cos\phi = a $$
$$ A\sin\phi = -b $$
Squaring both sides of these equations and adding yields:
$$ A^2(\cos^2\phi + \sin^2\phi) = a^2 + b^2 $$
$$ A = \sqrt{a^2 + b^2} $$
Then, dividing them we have
$$ \frac{\sin\phi}{\cos\phi} = \tan\phi = -\frac{b}{a} $$
which are the desired relations.