I'm struggling to find the limit at infinity of : $$\lim \limits_{n\rightarrow\infty}\sin^2(\pi\sqrt{n^2 + n}), n\in\Bbb N$$ I know it is $1$ but I don't understand why this is wrong :
$\sin^2(\pi\sqrt{n^2 + n}) = \sin^2(\pi*n\sqrt{1 + \frac{1}{n}})$.
So $\lim \limits_{n\rightarrow\infty}\sin^2(\pi\sqrt{n^2 + n}) = \lim \limits_{n\rightarrow\infty}\sin^2(\pi*n\sqrt{1 + \frac{1}{n}}) = \lim \limits_{n\rightarrow\infty} \sin^2(\pi*n) = 0$.
Thanks.