Detailed derivation, using Taylor expansions (you will need $\sin x = x-\frac{x^3}{6} + o(x^3)$ and $\ln(1+x) = x + o(x)$, for $x\to 0$):
Rewrite the quantity in the (more convenient) exponential form:
$$
\left(n\sin \frac{1}{n}\right)^{n^2} = e^{n^2 \ln\left(n\sin \frac{1}{n}\right)}
$$
Use the Taylor expansion of $\sin$ around $0$ (as $\frac{1}{n}\to 0)$:
$$\left(n\sin \frac{1}{n}\right)^{n^2} = e^{n^2 \ln\left(n\left(\frac{1}{n}-\frac{1}{6n^3}+o\left(\frac{1}{n^3}\right)\right)\right)}= e^{n^2 \ln\left(1-\frac{1}{6n^2}+o\left(\frac{1}{n^2}\right)\right)}$$
(I am hiding the computations to give only the hint, but place your mouse over the gray area to reveal them)
Use the Taylor expansion of $\ln(1+x)$ around $0$ on the result (as now $\frac{1}{6n^2}\to 0)$:
$$\left(n\sin \frac{1}{n}\right)^{n^2} = e^{n^2 \left(-\frac{1}{6n^2}+o\left(\frac{1}{n^2}\right)\right)}= e^{-\frac{1}{6}+o\left(1\right)} $$
This gives you the limit:
$$
e^{-\frac{1}{6}+o\left(1\right)} \xrightarrow[n\to\infty]{} e^{-\frac{1}{6}}
$$
where all $o(\cdot)$'s are taken with regard to $n$ going to $\infty$.