If $f(x.y)=f(x).f(y)$ for all $x,y$ and $f(x)$ is continuous at $x=1$,then show that $f(x)$ is continuous for all x except at $x=0$.Given $f(1)\neq 0$
In the functional equation $f(x.y)=f(x).f(y)$,put $x=1,y=1$
$f(1)=f(1).f(1)\Rightarrow f(1)=1$ because $f(1)\neq 0$
As $f(x)$ is continuous at $x=1$,so $\lim_{x\to 1}=f(1)=1$
Now take any number $x_0\neq 0$
Put $x=x_0$ in the equation $f(x.y)=f(x).f(y)$
$\lim_{x\to1}f(x_0.x)=f(x_0).f(x)=f(x_0)\lim_{x\to1}f(x)=f(x_0).1=f(x_0)$
So i proved $\lim_{x\to1}f(x_0.x)=f(x_0)$
Therefore $f(x)$ is continuous at all non zero numbers.
But i do not know how to prove that $f(x)$ is not continuous at $x=0.$Please help me.Thanks.