Part I. Given any constant $a,b$, the equation in $x$,
$$\left(\frac{x+\sqrt{x^2+4a}}{2}\right)^{k}+\left(\frac{x-\sqrt{x^2+4a}}{2}\right)^{k}=b\tag1$$
is solvable in radicals for any degree $k$. The general solution is,
$$x = \frac{-a}{\beta^{1/k}}+\beta^{1/k},\quad\text{where}\;\beta = \frac{b+\sqrt{b^2+4a^k}}{2}$$
For example, expanding at $k=5$, we get the DeMoivre quintic,
$$x^5+5ax^3+5a^2x=b$$
Part II. Given any constant $a,b$, the equation in $x$,
$$\frac{\big(x+\sqrt{b}\big)^k+\big(x-\sqrt{b}\big)^k}{2}+a\frac{\big(x+\sqrt{b}\big)^k-\big(x-\sqrt{b}\big)^k}{2\sqrt{b}}=0\tag2$$
is also solvable in radicals for any $k$. For example, for $k=5$, we get,
$$x^5+5ax^4+10bx^3+10abx^2+5b^2x+ab^2=0$$
Question: What is the general solution of $(2)$?