Why $\lim\limits_{R \to +\infty} \int_{[0,Re^{i2\pi/n}]}\frac{1}{1+z^n}dz$ = $e^{i2\pi/n}$ $\int_0^{+\infty} \frac{1}{1+x^n}dx$
(The integration is on the ray: ${[0,Re^{i2\pi/n}]}$)
As it is shown in the following topic: Show that $\int_0^ \infty \frac{1}{1+x^n} dx= \frac{ \pi /n}{\sin(\pi /n)}$ , where $n$ is a positive integer. in number (3).
And when i try $z = e^{i(2 \pi)/n} . x * \frac1 R$, the second term of the equality doesn't appear easily..
– jojox Dec 18 '15 at 12:29h(t) = $ \frac {b-t} {b-a} z_{A} + \frac {b-t} {b-a} z_{B} $ to parametrize a segment [AB]...
Thank you !
– jojox Dec 18 '15 at 12:42