I am looking for a hint on this problem:
Suppose $a,b\in\mathbb{N}$ such that $\gcd\{ab,p\}=1$ for a prime $p$. Show that if $a^p\equiv b^p \pmod p$, then we have: $$a^p \equiv b^p \pmod {p^2}.$$
I have noted that $a,b$ are necessarily coprime to $p$ already, and Fermat's little theorem ($x^p\equiv x \pmod p$), but I do not see how I should apply it in this case if at all.
Any hints are appreciated!