$x_{n+1} - x_n=$
$= ( \frac{1}{ n + 2} +\frac{ 1}{ n + 3} + · · · +\frac{ 1}{ 2n }+\frac{ 1}{ 2n+1 }+\frac{ 1}{ 2n+2 })-( \frac{1}{ n + 1} +\frac{ 1}{ n + 2} + · · · +\frac{ 1}{ 2n })=$
$= \frac{ 1}{ 2n+1 }+\frac{ 1}{ 2n+2 }-\frac{1}{ n + 1} =$
$= \frac{ 1}{ 2n+1 }+\frac{ 1}{ 2n+2 }-\frac{2}{ 2n + 2} =$
$= \frac{ 1}{ 2n+1 }-\frac{ 1}{ 2n+2 } =$
$= \frac{ 1}{ 2n+1 }-\frac{ 1}{ 2n+2 } =$
$= \frac{ 2n+2-2n-1}{ (2n+1)(2n+2) } =$
$= \frac{ 2n+2-2n-1}{ (2n+1)(2n+2) } =$
$= \frac{ 1}{ (2n+1)(2n+2) } >0$
so
$x_{n+1} - x_n>0$
$x_{n+1} > x_n$
and the sequence is increasing
$\frac{ 1}{ n+1 } < \frac{1}{n}$
$\frac{ 1}{ n+2 } < \frac{1}{n}$
...
$\frac{ 1}{ 2n } < \frac{1}{n}$
we add and we have
$x_n <1$
so the sequence is bounded above