I have looked at the proof Proving that the Fourier Basis is complete for C(R/$2*\pi$ , C) with $L^2$ norm but am having trouble understanding the argumentation about the Hilberspace. I think the proof is quite nice and would like to understand it, and also need to refresh my Functional analysis. In particular:
This is probably not the most elegant way, but this method generalizes to showing the unitarity of the Fourier transform. The essential part of this proof is showing that the map L2(R/2πZ)→ℓ2(Z) given by taking the Fourier coefficients from the discrete Fourier transform is an isometry, since the discrete Fourier transform is essentially the orthogonal projection onto the closure of the span of the functions e^inx. Then, by basic Hilbert space theory, it would follow that {e^inx} is a maximal orthogonal set.
The "then by basic Hilber space theory" is not clear to me...
Is this because if you take the Span of $e^{inx}$ it has the same Image under an Unitary Operator as L2(R/2πZ), and thus {e^inx} must be dense in L2(R/2πZ) - And if yes, whats the name of a theorem showing this/can you direct me to one?
thank you