0

For $X_{k}\sim N(0,1)$ iid find diverging constants $a_{n}$ s.t. $$a_{n}(max_{1\leq k\leq n}X_{k}-a_{n})\stackrel{d}{\to}L$$

for some limit L.

Or $a_{n}$ s.t. $\frac{n}{a_{n}}e^{-\frac{1}{2}a_{n}^{2}}\to c$ for $c\neq \infty$ or 0.

Attempt

Let $M_{n}:=max_{1\leq k\leq n}X_{k}$ then we have

$$P(M_{n}\leq \frac{x}{a_{n}}+a_{n})=(1-P(X_{k}\geq \frac{x}{a_{n}}+a_{n}))^{n}$$

$$\sim (1- \frac{1}{\frac{x}{a_{n}}+a_{n}}e^{-\frac{1}{2}(\frac{x}{a_{n}}+a_{n})^{2}} )^{n}.$$

So we want $a_{n}$ s.t.

$$\frac{n}{\frac{x}{a_{n}}+a_{n}}e^{-\frac{1}{2}(\frac{x}{a_{n}}+a_{n})^{2}}\to f(x),$$ some function $f(x)$ so that $e^{-f(x)}$ is chf.

One can show by Borel Cantelli that $lim \frac{M_{n}}{\sqrt{2logn}}\stackrel{as}{\to} 1$. So that is a good guess:

$$\frac{n}{\frac{x}{\sqrt{2logn}}+\sqrt{2logn}}e^{-\frac{1}{2}(\frac{x}{\sqrt{2logn}}+\sqrt{2logn})^{2}}=c\frac{1}{\frac{x}{\sqrt{2logn}}+\sqrt{2logn}}\to 0$$

This implies $P(M_{n}\leq \frac{x}{\sqrt{2logn}}+\sqrt{2logn})\to 1,$

which is not a cdf.

For $a_{n}=\sqrt{2loglogn}$, we get $P(M_{n}\leq \frac{x}{\sqrt{2logn}}+\sqrt{2logn})\sim e^{-\infty}=0,$

which is also not a cdf. Now I am trying to work in between them.

Please only hints. Thank you

BCLC
  • 13,459

0 Answers0