Assume $1<p_k< \infty$ for $k=1,\ldots,N$ , and $\displaystyle\sum^N_{k=1}\frac{1}{p_k} =1$.
I want to prove that $$\left|\int_X f_1 f_2\cdots f_N\; d\mu \right| \le \lVert f_1\rVert_{p_1} \lVert f_2\rVert_{p_2} \cdots \lVert f_N\rVert_{p_N}.$$
How can I directly adjust Hölder's inequality for it?