Question 1) Solve $$x^2\equiv -3\pmod {13}$$
I see that $x^2+3=13n$. I don't really know what to do? Any hints?
The solution should be $$x\equiv \pm 6 \pmod {13}$$
Question 2) $\ $ [note $\bmod 7\!:\ x^2\equiv -3\equiv 4\iff x\equiv \pm 2.\,$ Here we lift to $\!\!\pmod{\!91}\ $ -Bill]
Given $x\equiv \pm 6 \pmod {13}$ and $x\equiv \pm 2 \pmod {7}$ find solutions $\pmod {91}$. I see that $91=13 \times 7$, does it mean I have to use chinese remainder theorem on 4 equations? If,so $x=6\times 13\times 7 \times 7\times (13\times 7 \times 7)^{-1}...$