How do you calculate : $$\lim_{n\to \infty}\frac{n^{2}}{\left(2+\frac{1}{n}\right)^{n}}$$
Thanks!
How do you calculate : $$\lim_{n\to \infty}\frac{n^{2}}{\left(2+\frac{1}{n}\right)^{n}}$$
Thanks!
Let $a_n = \dfrac{n^{2}}{\left(2+\frac{1}{n}\right)^{n}}$.
Then $\sqrt[n]{a_n} = \dfrac{(\sqrt[n]{n})^{2}}{2+\frac{1}{n}} \to \dfrac12 < 1$.
By the root test, $\sum a_n$ converges and so $a_n \to 0$.
HINT
What happens if you replace $(2+1/n)^n$ by $2^n$?
$n=\cfrac{x}{2}$ $$\underset{n\rightarrow\infty}{\lim}\cfrac{n^{2}}{\left(2+\dfrac{1}{n}\right)^{n}}=\underset{x\rightarrow\infty}{\lim}\cfrac{\dfrac{x^{2}}{4}}{\left(2+\dfrac{2}{x}\right)^{\frac{x}{2}}}=\underset{x\rightarrow\infty}{\lim}\cfrac{\dfrac{x^{2}}{4}}{2^\frac{x}{2}\sqrt{\left(1+\dfrac{1}{x}\right)^{x}}}=\underset{x\rightarrow\infty}{\lim}\cfrac{\dfrac{x^{2}}{4}}{2^\frac{x}{2}\sqrt{e}}=0$$
$$\lim_{n\to\infty}\frac{n^2}{(2+\tfrac1n)^n}=\lim_{n\to\infty}\left(\frac{(2+\tfrac1n)^n}{n^2}\right)^{-1}$$
Write $n^2$ as $(\sqrt[n]{n^2})^n$:
$$\lim_{n\to\infty}\left(\frac{(2+\frac1n)^n}{(\sqrt[n]{n^2})^n}\right)^{-1}=\lim_{n\to\infty}\left(\frac{2}{(\sqrt[n]{n})^2}+\frac{1}{n(\sqrt[n]{n})^2}\right)^{-n}=\left[\left(\frac{2}{1}+\frac{1}{1\cdot\infty}\right)^{-\infty}\right]=0$$
Because $\sqrt[n]{n}\to 1$
Write the denominator as $$\left(2+\frac1n\right)^n=2^n\left(1+\frac{1/2}{n}\right)^n \to +\infty\cdot e^{1/2}=+\infty$$ as $n\to +\infty$. So $$\lim_{n\to +\infty}\frac{n^2}{\left(2+\frac1n\right)^n}=e^{-1/2}\lim_{n\to+\infty}\frac{n^2}{2^n}=0$$ where the last equality is due to L'Hopital's rule, since $(2^n)''=2^n(\ln2)^2$ while $(n^2)''=2$ independent of $n$.