0

Find the value of the series $\sum\limits_{n=1}^ \infty \dfrac{n}{2^n}$

The series on expanding is coming as $\dfrac{1}{2}+\dfrac{2}{2^2}+..$

I tried using the form of $(1+x)^n=1+nx+\dfrac{n(n-1)}{2}x^2+..$ and then differentiating it but still it is not coming .What shall I do with this?

Learnmore
  • 31,062

1 Answers1

0

HINT:

$$\sum_{n=1}^{\infty}\frac{n}{2^n}=\lim_{m\to\infty}\sum_{n=1}^{m}\frac{n}{2^n}=\lim_{m\to\infty}\frac{-m+2^{m+1}-2}{2^m}=$$ $$\lim_{m\to\infty}\frac{-2^{1-m}+2-2^{-m}m}{1}=\frac{0+2-0}{1}=\frac{2}{1}=2$$

Jan Eerland
  • 28,671