Hint $\ $ For $\rm\ w = \sqrt{3}+\!\sqrt{2},\ \ w^2= 5+2\sqrt{6}\in\mathbb Q[w]\:\Rightarrow\color{#C00}{\sqrt{6}} \in \mathbb Q[w]\:\Rightarrow\:\sqrt{2}\in \mathbb Q[w]\:$ since
$$ \begin{eqnarray} \sqrt{2}\ &=&\ \sqrt{2}\ (\ 3\,\ -\,\ 2\ ) \\
&=& \ \sqrt{2}\ (\sqrt{3}-\!\sqrt{2})&\!(\sqrt{3}+\!\sqrt{2})\\
&=&\quad\ \ \ (\sqrt{6}\,\ -\ 2)\:&\rm\!(\sqrt{3}+\!\sqrt{2}) = (\color{#C00}{\sqrt{6}}-2)w\, \in\, \mathbb Q[w] \end{eqnarray}\quad\ \ $$
Remark $\ $ See here for a more general approach related to the Primitive Element Theorem.
Eliminating $\:\sqrt{6}\:$ yields $\rm\:\sqrt{2}\, =\, ((t^2\!-\!5)/2\!-\!2)\,t\:$ for $\rm\: t = \sqrt{3}+\!\sqrt{2},\:$ which, not surprisingly, is precisely the same polynomial in Serkan's answer.