0

Let $t_n\ge 0$. How to prove that $\lim\limits_{n\to \infty} \sup t_n=\lim\limits_{n\to \infty} \sup t_n\sqrt[n]{n}$?

Here is my sketch: So $t_n\ge 0$ and $\sqrt[n]{n}\ge 1$ then $t_n\sqrt[n]{n}\ge t_n$ hence $$\lim\limits_{n\to \infty} \sup t_n\sqrt[n]{n}\ge\lim\limits_{n\to \infty} \sup t_n.$$ How to prove the converse inequality?

Raheem Najib
  • 1,011

1 Answers1

0

We can prove more general claim: If $\lim \limits_{n\to \infty}a_n=1$ and $\lim\sup \limits_{n\to \infty}b_n=b$ then $\lim\sup \limits_{n\to \infty}a_nb_n=b.$

Proof: Let $X_1$ be the set of all subsequential limits of sequence $\{b_n\}$ and $X_2$ be the set of all subsequential limits of sequence $\{a_nb_n\}$. We prove that $X_1=X_2$.

Let $s\in X_1$ then $\exists \{n_k\}$ such that $b_{n_k}\to s$ as $k\to \infty$. Then $a_{n_k}b_{n_k}\to s$. Then $s\in X_2$ and $X_1\subseteq X_2$. Making converse reasoning we get that $X_2\subseteq X_1.$ Thus $X_1=X_2$ and $\sup X_1=\sup X_2$. Hence $$\lim\sup \limits_{n\to \infty}a_nb_n=\lim\sup \limits_{n\to \infty}b_n.$$

RFZ
  • 16,814