Let $t_n\ge 0$. How to prove that $\lim\limits_{n\to \infty} \sup t_n=\lim\limits_{n\to \infty} \sup t_n\sqrt[n]{n}$?
Here is my sketch: So $t_n\ge 0$ and $\sqrt[n]{n}\ge 1$ then $t_n\sqrt[n]{n}\ge t_n$ hence $$\lim\limits_{n\to \infty} \sup t_n\sqrt[n]{n}\ge\lim\limits_{n\to \infty} \sup t_n.$$ How to prove the converse inequality?