45

$$\int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx$$

This was a Calc 2 problem for extra credit (we have done hyperbolic trig functions too, if that helps) and I didn't get it (don't think anyone did) -- how would you go about it?

6 Answers6

63

It might not be elliptic after all... (unless I have made some mistake)

$$\int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx$$

Let $\displaystyle u = x -\frac{1}{x}$.

Then $\displaystyle du = (1 + \frac{1}{x^2})dx$.

Now $$\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}} = -\frac{x^2(1 + 1/x^2)}{x(x-1/x)\sqrt{x^2(x^2 + 1/x^2)}} = -\frac{1 + 1/x^2}{(x-1/x)\sqrt{(x - 1/x)^2 + 2}}$$

Thus

$$\int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx$$

$$= -\int \ \frac{\mathrm{du}}{u \sqrt{u^2 + 2}}$$

Aryabhata
  • 82,206
  • 5
    Hah, it is indeed not elliptic! $\frac1{\sqrt{2}}\ln\left(\frac{2x+\sqrt{2x^4+2}}{x^2-1}\right)$ does differentiate to the integrand! Great job; I'm glad I'm wrong! – J. M. ain't a mathematician Dec 28 '10 at 08:40
  • 21
    Both Maple and Mathematica are not smart enough to do this problem. – TCL Dec 28 '10 at 15:32
  • 1
    Brilliant, thanks, so this is what we had to see. – LinAlgStudent Dec 28 '10 at 16:09
  • 6
    @Moron: Ah, this the standard C.B.S.E 12th standard problem. –  May 07 '11 at 11:14
  • 2
    @TCL: Moron is smart enough, though. –  May 07 '11 at 11:15
  • @TCL: Yeah I know, but since we both are from India, we were aware of this. Thats why I said to him. –  May 17 '11 at 16:45
  • @J.M.: it's $\frac{1}{\sqrt{2}} \ln ( \frac{-2 x+\sqrt{2 x^4+2}}{x^2-1})$. (I got it by asking Axiom) – sdcvvc Dec 03 '11 at 23:35
  • 1
    Hmm, well given how much I’ve come across it, this post confirms it for me: x±1/x is indeed a useful substitution. I guess it only makes sense, each trig substitution is just that combined with an e^x substitution (excluding tan/tanh/cot/coth) – Math Machine Jul 27 '19 at 16:31
21

Somewhat inspired by Moron's wonderful answer, I decided to see if a trigonometric solution would do the job.

Making the substitution $x=\cot\left(\frac{\theta}{2}\right)$, $\mathrm dx=\frac{\mathrm d\theta}{\cos\;\theta-1}$, we have

$$\int \frac{\mathrm d\theta}{\cos\;\theta(1-\cos\;\theta)\sqrt{1+\cot^4\frac{\theta}{2}}}$$

$$=\int \frac{\mathrm d\theta}{\cos\;\theta(1-\cos\;\theta)\sqrt{1+\left(\frac{1+\cos\;\theta}{1-\cos\;\theta}\right)^2}}$$

$$=\frac1{\sqrt{2}}\int \frac{\mathrm d\theta}{\cos\;\theta\sqrt{1+\cos^2\theta}}$$

which integrates to

$$\frac1{\sqrt{2}}\tanh^{-1}\frac{\sin\;\theta}{\sqrt{1+\cos^2\theta}}$$

Undoing the substitution, we get

$$\frac1{\sqrt{2}}\tanh^{-1}\left(x\sqrt{\frac{2}{x^4+1}}\right)$$

and it is easy to verify that the derivative of this last expression gives the original integrand.

12

Moron's and J.M.'s solutions are nice. Hopefully this solution is simpler.

Without loss of generality we may assume that $1\gt x\gt 0$. Put $x:=\sqrt{y}$, $1\gt y\gt 0$. Then we obtain $$ \int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx=\int{\frac{1+y}{2(1-y)\sqrt{1+y^2}\sqrt{y}}}\mathrm dy. $$ Introduce the new variable $$ t:=\frac{1+y}{1-y},\qquad 1\lt t \lt \infty. $$ Then we have $$ y=\frac{-1+t}{1+t}, $$ $$ \mathrm dy=\frac{2}{(1+t)^2}\,\mathrm dt. $$ Substituting back we obtain $$ \int{\frac{1+y}{2(1-y)\sqrt{1+y^2}\sqrt{y}}}\mathrm dy=\int{\frac{t}{2\sqrt{1+\left(\dfrac{-1+t}{1+t} \right)^2}\sqrt{\dfrac{-1+t}{1+t}}}\frac{2}{(1+t)^2}\,\mathrm dt} $$ $$ =\frac{1}{\sqrt{2}}\int{\frac{t}{\sqrt{t^4-1}}}\mathrm dt $$ $$ =\frac{1}{2\sqrt{2}}\ln(t^2+\sqrt{t^4-1})+C. $$ Putting back everything we obtain $$ \frac{1}{2\sqrt{2}}\ln\left(\frac{(1+x^2)^2+2\sqrt{2}x\sqrt{1+x^4}}{(1-x^2)^2}\right)+C. $$

vesszabo
  • 3,481
7

What a surprise! Surfing the net, I found an almost same question on "hard integral" $$ \displaystyle \int \frac{x^2 - 1}{(x^2 + 1) \sqrt{x^4 + 1}} \, dx $$ from June 19, 2008.

vesszabo
  • 3,481
  • 1
    That seems to be very similar to my solution! I am not surprised though, after all, this appeared in a test, and I expect it to be well known in some circles. btw, if you liked this problem (which I am guessing you did :-)), you might like this too: http://math.stackexchange.com/questions/13414/is-this-definite-integral-really-independent-of-a-parameter-how-can-it-be-shown/ – Aryabhata Jan 07 '11 at 18:00
  • Yes, I like to calculate integrals, although at the first step I check them by computer:-) . I also gave an elementary solution to your referred integral. – vesszabo Jan 10 '11 at 14:28
1

\begin{align}\int \frac{(1+x^2)dx}{(1-x^2)\sqrt{x^4+1}} =&\int \frac{\frac{(1+x^2)dx}{(1-x^2)|1-x^2|}}{\sqrt{\frac{x^4+1}{(1-x^2)^2}}} =\int \frac{d(\frac x{|1-x^2|})}{\sqrt{1+\frac{2x^2}{(1-x^2)^2}}} =\frac1{\sqrt2}\sinh^{-1}\frac{\sqrt2 x}{|1-x^2|} \end{align}

Quanto
  • 97,352
0

$$\begin{align*} & \int\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}\,dx \\ &= \int\frac{y}{\sqrt{1+\frac{(y-1)^2}{(y+1)^2}}}\cdot\frac{dy}{(y+1)\sqrt{y^2-1}} \tag1\\ &= \frac1{\sqrt2} \int\frac{y}{\sqrt{y^4-1}}\,dy \\ &= \frac1{2\sqrt2} \int\frac{dz}{\sqrt{z^2-1}} \tag2 \\ &= \frac1{2\sqrt2} \tanh^{-1}\left(\frac z{\sqrt{z^2-1}}\right) + C \\ &= \frac1{2\sqrt2} \tanh^{-1}\left(\frac{y^2}{\sqrt{y^4-1}}\right) + C \\ &= \frac1{2\sqrt2} \tanh^{-1}\left(\frac{\left(\frac{1+x^2}{1-x^2}\right)^2}{\sqrt{\left(\frac{1+x^2}{1-x^2}\right)^4-1}}\right) + C \\ &= \frac1{2\sqrt2} \tanh^{-1}\left(\frac{(1+x^2)^2}{\sqrt{8x^2(1+x^4)}}\right) + C \end{align*}$$


  • $(1)$ : substitute $y = \dfrac{1+x^2}{1-x^2} \color{#0000006F}{\iff x=\sqrt{\dfrac{y-1}{y+1}} \implies dx = \dfrac{dy}{(y+1)\sqrt{y^2-1}}}$
  • $(2)$ : substitute $z=y^2 \color{#0000006F}{\iff y=\sqrt z \implies dy=\dfrac{dz}{2\sqrt z}}$
user170231
  • 19,334