$$\int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx$$
This was a Calc 2 problem for extra credit (we have done hyperbolic trig functions too, if that helps) and I didn't get it (don't think anyone did) -- how would you go about it?
$$\int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx$$
This was a Calc 2 problem for extra credit (we have done hyperbolic trig functions too, if that helps) and I didn't get it (don't think anyone did) -- how would you go about it?
It might not be elliptic after all... (unless I have made some mistake)
$$\int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx$$
Let $\displaystyle u = x -\frac{1}{x}$.
Then $\displaystyle du = (1 + \frac{1}{x^2})dx$.
Now $$\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}} = -\frac{x^2(1 + 1/x^2)}{x(x-1/x)\sqrt{x^2(x^2 + 1/x^2)}} = -\frac{1 + 1/x^2}{(x-1/x)\sqrt{(x - 1/x)^2 + 2}}$$
Thus
$$\int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx$$
$$= -\int \ \frac{\mathrm{du}}{u \sqrt{u^2 + 2}}$$
Somewhat inspired by Moron's wonderful answer, I decided to see if a trigonometric solution would do the job.
Making the substitution $x=\cot\left(\frac{\theta}{2}\right)$, $\mathrm dx=\frac{\mathrm d\theta}{\cos\;\theta-1}$, we have
$$\int \frac{\mathrm d\theta}{\cos\;\theta(1-\cos\;\theta)\sqrt{1+\cot^4\frac{\theta}{2}}}$$
$$=\int \frac{\mathrm d\theta}{\cos\;\theta(1-\cos\;\theta)\sqrt{1+\left(\frac{1+\cos\;\theta}{1-\cos\;\theta}\right)^2}}$$
$$=\frac1{\sqrt{2}}\int \frac{\mathrm d\theta}{\cos\;\theta\sqrt{1+\cos^2\theta}}$$
which integrates to
$$\frac1{\sqrt{2}}\tanh^{-1}\frac{\sin\;\theta}{\sqrt{1+\cos^2\theta}}$$
Undoing the substitution, we get
$$\frac1{\sqrt{2}}\tanh^{-1}\left(x\sqrt{\frac{2}{x^4+1}}\right)$$
and it is easy to verify that the derivative of this last expression gives the original integrand.
Moron's and J.M.'s solutions are nice. Hopefully this solution is simpler.
Without loss of generality we may assume that $1\gt x\gt 0$. Put $x:=\sqrt{y}$, $1\gt y\gt 0$. Then we obtain $$ \int{\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}}\mathrm dx=\int{\frac{1+y}{2(1-y)\sqrt{1+y^2}\sqrt{y}}}\mathrm dy. $$ Introduce the new variable $$ t:=\frac{1+y}{1-y},\qquad 1\lt t \lt \infty. $$ Then we have $$ y=\frac{-1+t}{1+t}, $$ $$ \mathrm dy=\frac{2}{(1+t)^2}\,\mathrm dt. $$ Substituting back we obtain $$ \int{\frac{1+y}{2(1-y)\sqrt{1+y^2}\sqrt{y}}}\mathrm dy=\int{\frac{t}{2\sqrt{1+\left(\dfrac{-1+t}{1+t} \right)^2}\sqrt{\dfrac{-1+t}{1+t}}}\frac{2}{(1+t)^2}\,\mathrm dt} $$ $$ =\frac{1}{\sqrt{2}}\int{\frac{t}{\sqrt{t^4-1}}}\mathrm dt $$ $$ =\frac{1}{2\sqrt{2}}\ln(t^2+\sqrt{t^4-1})+C. $$ Putting back everything we obtain $$ \frac{1}{2\sqrt{2}}\ln\left(\frac{(1+x^2)^2+2\sqrt{2}x\sqrt{1+x^4}}{(1-x^2)^2}\right)+C. $$
What a surprise! Surfing the net, I found an almost same question on "hard integral" $$ \displaystyle \int \frac{x^2 - 1}{(x^2 + 1) \sqrt{x^4 + 1}} \, dx $$ from June 19, 2008.
\begin{align}\int \frac{(1+x^2)dx}{(1-x^2)\sqrt{x^4+1}} =&\int \frac{\frac{(1+x^2)dx}{(1-x^2)|1-x^2|}}{\sqrt{\frac{x^4+1}{(1-x^2)^2}}} =\int \frac{d(\frac x{|1-x^2|})}{\sqrt{1+\frac{2x^2}{(1-x^2)^2}}} =\frac1{\sqrt2}\sinh^{-1}\frac{\sqrt2 x}{|1-x^2|} \end{align}
$$\begin{align*} & \int\frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}\,dx \\ &= \int\frac{y}{\sqrt{1+\frac{(y-1)^2}{(y+1)^2}}}\cdot\frac{dy}{(y+1)\sqrt{y^2-1}} \tag1\\ &= \frac1{\sqrt2} \int\frac{y}{\sqrt{y^4-1}}\,dy \\ &= \frac1{2\sqrt2} \int\frac{dz}{\sqrt{z^2-1}} \tag2 \\ &= \frac1{2\sqrt2} \tanh^{-1}\left(\frac z{\sqrt{z^2-1}}\right) + C \\ &= \frac1{2\sqrt2} \tanh^{-1}\left(\frac{y^2}{\sqrt{y^4-1}}\right) + C \\ &= \frac1{2\sqrt2} \tanh^{-1}\left(\frac{\left(\frac{1+x^2}{1-x^2}\right)^2}{\sqrt{\left(\frac{1+x^2}{1-x^2}\right)^4-1}}\right) + C \\ &= \frac1{2\sqrt2} \tanh^{-1}\left(\frac{(1+x^2)^2}{\sqrt{8x^2(1+x^4)}}\right) + C \end{align*}$$