Is $\{nx^n(1-x)\}_{n=1}^{\infty}$ pointwise convergent if $x \in \mathbb{R}$? If it is, what's the pointwise limit?
Asked
Active
Viewed 47 times
0
-
See what happens if $x > 1$? – Yes Dec 12 '15 at 06:04
-
yes, it's not pointwise convergent. – Kenneth.K Dec 12 '15 at 06:07
-
See this also: http://math.stackexchange.com/questions/55468/how-to-prove-that-exponential-grows-faster-than-polynomial – Seven Dec 12 '15 at 06:07
-
@Kenneth.K Right on; then you found a counterexample. – Yes Dec 12 '15 at 06:09
1 Answers
1
$f_n(x)=nx^n(1-x)$ ;
Note that $\lim_{n\to \infty} x^n=0\iff |x|<1\implies \lim_{n\to \infty}f_n(x)=0$.
Also if $x=1\implies f_n(x)=0\forall n\implies \lim_{n\to \infty} f_n(x)=0.$
However if $x=-1$ or $|x|>1\implies \lim_{n\to \infty} f_n(x)=\infty$

Learnmore
- 31,062