0

Is $\{nx^n(1-x)\}_{n=1}^{\infty}$ pointwise convergent if $x \in \mathbb{R}$? If it is, what's the pointwise limit?

Kenneth.K
  • 1,405

1 Answers1

1

$f_n(x)=nx^n(1-x)$ ;

Note that $\lim_{n\to \infty} x^n=0\iff |x|<1\implies \lim_{n\to \infty}f_n(x)=0$.

Also if $x=1\implies f_n(x)=0\forall n\implies \lim_{n\to \infty} f_n(x)=0.$

However if $x=-1$ or $|x|>1\implies \lim_{n\to \infty} f_n(x)=\infty$

Learnmore
  • 31,062