Prove that the $\lim_{n \rightarrow \infty} \frac{2^{n} n!}{n^{n}} = 0$
$\rightarrow \frac{2^{n} n!}{n^{n}} = $ $(\frac{2}{n})^{n} n!$
Its possible to say that $\lim_{n \rightarrow \infty} $$\frac{2}{n}$ is $0$ and because of this reason $\lim_{n \rightarrow \infty} $$(\frac{2}{n})^{n}$ is $0$ also ? And Because of this $\lim_{n \rightarrow \infty} \frac{2^{n} n!}{n^{n}} = 0$ ?
Thanks.