1

$\int\limits_{0}^{2\pi}e^{\cos\varphi}(\cos\varphi-\sin\varphi)d\varphi$

I think

$e^{i\varphi}=z$ $\to d\varphi=\frac{dz}{iz}$

$\cos\varphi=\frac{z^2+1}{2z}$

$\sin\varphi=\frac{z^2-1}{2iz}$

$\oint\limits_{|z|=1}^{}e^{\frac{z^2+1}{2z}}\left(\frac{z^2+1}{2z}-\frac{z^2-1}{2iz}\right)dz$

$z=0$ - essential singularity

We need to be expanded in a Laurent but I do not know how there are so many polchaetsya values at $\frac{1}{z}$

Olya12
  • 93

2 Answers2

0

Mark that $$\int_0^{2\pi}e^{cos \phi}\sin\phi d\phi =\int_1^1e^ydy=0 \text{ (no singularities)},$$ so the artifical transformations $$\int_0^{2\pi}e^{cos \phi}(\cos\phi-\sin\phi) d\phi = \int_0^{2\pi}e^{cos \phi}(\cos\phi + i\sin\phi) d\phi = \int_0^{2\pi}e^{cos \phi}e^{i\phi} d\phi$$ easy the task

0

$$\int_0^{2\pi}e^{\cos\varphi}(\cos\varphi-\sin\varphi)~d\varphi~=~2\int_0^\pi e^{\cos\varphi}\cos\varphi~d\varphi~=~2\pi~I_1(1).$$

See Bessel function for more information.

Lucian
  • 48,334
  • 2
  • 83
  • 154