$\int\limits_{0}^{2\pi}e^{\cos\varphi}(\cos\varphi-\sin\varphi)d\varphi$
I think
$e^{i\varphi}=z$ $\to d\varphi=\frac{dz}{iz}$
$\cos\varphi=\frac{z^2+1}{2z}$
$\sin\varphi=\frac{z^2-1}{2iz}$
$\oint\limits_{|z|=1}^{}e^{\frac{z^2+1}{2z}}\left(\frac{z^2+1}{2z}-\frac{z^2-1}{2iz}\right)dz$
$z=0$ - essential singularity
We need to be expanded in a Laurent but I do not know how there are so many polchaetsya values at $\frac{1}{z}$