In data fitting, we are interested to solve:
$$\boldsymbol \theta = \underset{{\boldsymbol{\theta}} \in \mathbb{R} ^{M+1}}{\text{minimize}}J(\boldsymbol{\theta})$$
The error function $J\colon \mathbb{R^{M+1}}\to\mathbb{R}$ is given by $$J(\boldsymbol{\theta}) = \frac{1}{2N} \sum\limits_{n=1}^N \{h_{\boldsymbol{\theta}}(\boldsymbol{\phi}^{(n)})-t^{(n)}\}^2$$
where $\boldsymbol{\phi}:\mathbf{R}^D \rightarrow \mathbf{R}^{\mathcal{H}}$ a map/transformation function. The hypothesis $h_{\boldsymbol{\theta}}(\mathbf{\phi}^{(n)})$ we want to fit is given by:
$$h_{\boldsymbol{\theta}}(\boldsymbol{\phi}^{(n)}) = h(\boldsymbol{\phi}^{(n)},\boldsymbol{\theta}) = \theta_0 + \theta_1 \phi^{(n)}_1 + \theta_2 \phi^{(n)}_2 + \dots + \theta_D \phi^{(n)}_D = \sum\limits_{d=0}^D \theta_d \phi^{(n)}_d, \quad \phi^{(n)}_0 = 1$$
If we define the parameters vector $\boldsymbol{\theta} = [\theta_0, \theta_2, \dots, \theta_D]^T \in \mathbb{R^{D+1}}$ the vectorized form of the hypothesis and the error functions respectively is $$h_{\boldsymbol{\theta}}(\boldsymbol{\phi}^{(n)}) = \boldsymbol{\theta}^T \boldsymbol{\phi}^{(n)}$$ and
$$J(\boldsymbol{\theta}) = \frac{1}{2N} (\boldsymbol{\Phi}\boldsymbol{\theta}- \mathbf{t})^T(\boldsymbol{\Phi}\boldsymbol{\theta}- \mathbf{t}) = \frac{1}{2N}||\boldsymbol{\Phi}\boldsymbol{\theta}- \mathbf{t}||^2$$ with
$$\boldsymbol{\Phi} = \begin{bmatrix}
(\boldsymbol{\phi}^{(1)})^T \\[0.3em]
(\boldsymbol{\phi}^{(2)})^T \\[0.3em]
\vdots \\[0.3em]
(\boldsymbol{\phi}^{(n)})^T
\end{bmatrix}= \begin{bmatrix}
\phi^{(1)}_1 & \phi^{(1)}_2 & \dots & \phi^{(1)}_D \\[0.3em]
\phi^{(2)}_1 & \phi^{(2)}_2 & \dots & \phi^{(2)}_D \\[0.3em]
\vdots \\[0.3em]
\phi^{(N)}_1 & \phi^{(N)}_2 & \dots & \phi^{(N)}_D \\[0.3em]
\end{bmatrix}$$
Finally, the quadratic form of the error function is:
$$J(\boldsymbol{\theta}) = \frac{1}{2N} \Bigg\{ \boldsymbol{\theta}^T \boldsymbol{\Phi}^T\boldsymbol{\Phi}\boldsymbol{\theta} -2 \boldsymbol{t}^T \boldsymbol{\Phi} \boldsymbol{\theta} + \boldsymbol{t}^T\boldsymbol{t} \Bigg\}$$
PS: This methodology is also called multivariable linear regression.