0

Here is my solution:

Let $m = \gcd(a, bc), n = \gcd(a, df)$. Since $d|b , f|c$ so $b = kd, c = k'f$ $\Rightarrow bc = kk'df \Rightarrow df|bc$
$n|a, n|df, df|bc \Rightarrow n|bc \Rightarrow n|\gcd(a,bc) \Rightarrow n|m$

But I can't go on any more to show $m|n$!! Please help me complete the solution.

Lisa
  • 629
Hamid Reza Ebrahimi
  • 3,445
  • 13
  • 41

1 Answers1

2

if $m|bc$ then there exist $m'$ and $m''$ with $m = m'm''$ such that $m'|b$ and $m''|c$. Since $m = m'm''|a$ we know that $m'|a$ and $m''|a$. Hence $m'|\gcd(a,b) = d$ and $m''|\gcd(a,c) = f$, so $m = m'm''|df$ and $m|\gcd(a, df) = n$.

Lisa
  • 629
Kerr
  • 1,866