Prove that if $f:(0,\infty)→\mathbb{R}$ satisfying $f(xy)=f(x)+f(y)$, and if $f$ is continuous at $x=1$, then $f$ is continuous for $x>0$.
I let $x=1$ and I find that $f(x)=f(x)+f(1)$ which implies that $f(1)=0$. So, $\lim_{x\to1}f(x)=0$, but how can I use this to prove continuity of $f$ for every $x \in \mathbb R$?
Any help would appreciated. Thanks