Fatou's lemma: Let $f_1, f_2, f_3, \cdots $ be a sequence of non-negative measurable functions on a measure space $(S,\Sigma,\mu)$. Define the function $f:S\to [0,\infty]$ a.e. pointwise limit by $$f(s)=\lim \inf\limits_{n\to \infty}f_n(s), \quad s\in S.$$ Then $f$ is measurable and $$\int \limits_{S}fd\mu \le \lim \inf\limits_{n\to \infty}\int \limits_{S}f_nd\mu. \qquad (1)$$
It's very famous and important claim.
Prove that if $\{f_n\}$ converges in measure to some function $g$ then LHS of $(1)$ can be changed to $\int gd\mu$.