0

How would I prove that $\mathbb{Z × N}$ is countable? The hint given was to follow to indicated order. Thanks!

Dude94
  • 59

2 Answers2

3

Let $p_0,p_1,p_2$ be three distinct positive primes. I am taking $\mathbb{N}=\{1,2,...\}$.

Define $\phi:\mathbb{N} \to \mathbb{Z} \times \mathbb{N}$ by $\phi(n) = \begin{cases} (n_1,n_2+1), & n = p_0^0p_1^{n_1}p_2^{n_2} \\ (-n_1,n_2+1), & n = p_0^1p_1^{n_1}p_2^{n_2} \\ (0,1), & \text{otherwise} \end{cases}$.

We see that $\phi(p_0^0p_1^{n_1}p_2^{n_2-1}) = (n_1,n_2)$, $\phi(p_0^1p_1^{n_1}p_2^{n_2-1}) = (-n_1,n_2)$, hence $\phi$ is surjective. It follows that $\mathbb{Z} \times \mathbb{N}$ is countable.

copper.hat
  • 172,524
3

$$\begin{array}{c|ccccccc} \mathbb{Z}&\searrow&\vdots&\vdots&\vdots&\vdots&\vdots\\ &10&\searrow&\vdots&\vdots&\vdots&\vdots\\ &5&11&\searrow&\vdots&\vdots&\vdots\\ &2&6&12&\searrow&\vdots&\vdots\\ &1&3&7&13&\downarrow&\vdots&\hspace{1in}\mathbb{N}\\\hline &4&8&14&\swarrow&\vdots&\vdots\\ &9&15&\swarrow&\vdots&\vdots&\vdots\\ &16&\swarrow&\vdots&\vdots&\vdots&\vdots\\ &\swarrow&\vdots&\vdots&\vdots&\vdots&\vdots\\ \end{array}$$

2'5 9'2
  • 54,717