I'm trying to show that the partial sums of $\log(j) = n\log(n) - n + \text{O}(\log(n))$
I know that $$\int_1^n\log(x)dx = n\log(n) - n + 1$$
so that this number is pretty close to what I want.
Now I look at the difference between sum and integral of log:
$$\sum_{j=1}^n \log(j) - \int_1^n \log(x)dx$$
My work:
Working out the arithmetic and simplifying as much as possible, I am now at $$\sum_{j=1}^n \log(j) - \int_1^n \log(x)dx = \log(n) + \sum_{j=1}^{n-1} \big[\log(\large \frac{1}{1+\frac{1}{j}}) - \log(1 + \frac{1}{j})(j) + 1]$$
Where can I go from here? I think I would want to show that this difference, i.e. the R.H.S., is actually $O(\log(n))$ ...
Thanks,