0

Solve without the use of L'Hopital

$$\lim\limits_{x\to1}{\frac{\sqrt{2^x+7}-\sqrt{2^{x+1}+5}}{x^3-1}}$$

I multiplied by the conjugate but nothing has changed.

K. Rmth
  • 1,749
Olya12
  • 93

1 Answers1

1

We can evaluate the limit of interest by using only well-known bounds for the exponential function along with the Squeeze Theorem. To that end we proceed.

Note that we can write

$$\begin{align} \frac{\sqrt{2^x+7}-\sqrt{2^{x+1}+5}}{x^3-1}&=\frac{2-2^x}{\left(\sqrt{2^x+7}+\sqrt{2^{x+1}+5}\right)(x^3-1)}\\\\ &=\left(\frac{-2}{\left(\sqrt{2^x+7}+\sqrt{2^{x+1}+5}\right)(x^2+x+1)}\right)\left(\frac{2^{x-1}-1}{x-1}\right)\\\\ &=\left(\frac{-2}{\left(\sqrt{2^x+7}+\sqrt{2^{x+1}+5}\right)(x^2+x+1)}\right)\left(\frac{e^{(x-1)\log 2}-1}{x-1}\right)\\\\ \end{align}$$

Now, in THIS ANSWER, I showed that for $|x|<1$, the exponential function satisfies the inequalities

$$1+x \le e^x\le \frac{1}{1-x}$$

Therefore, we have for $x<1+\frac{1}{\log 2}$

$$\log 2 \le \frac{e^{(x-1)\log 2}-1}{x-1}\le \frac{\log 2}{1-(x-1)\log 2}$$

whereupon invoking the Squeeze Theorem gives

$$\lim_{x\to 1} \frac{e^{(x-1)\log 2}-1}{x-1}=\log 2$$

And finally, we have

$$\lim_{x\to 1}\frac{\sqrt{2^x+7}-\sqrt{2^{x+1}+5}}{x^3-1}=-\frac19 \log 2$$

Mark Viola
  • 179,405