Let $f(x)=[1]x\in\mathbb{Z}_6[x]$. Find a polynomial $p(x)$ in $\mathbb{Z}_6[x]$ such that $p(x)\ne f(x)$, but $p\colon \mathbb{Z}_6\to \mathbb{Z}_6$ defines the same function as $f\colon \mathbb{Z}_6\to \mathbb{Z}_6$.
I am not sure what he is asking..? Expecially, $p\colon \mathbb{Z}_6\to \mathbb{Z}_6$ defines the same function as $f\colon \mathbb{Z}_6\to \mathbb{Z}_6$. this part makes me confused