I am taking a Phd class in econometrics, and the following is used constantly, for $X$ a $n\times k$ matrix, $n \neq k$: $$(X'X)^{-1} = ((X'X)^{-1})'$$ with "$'$" standing for transpose. Having a rather weak background in linear algebra, I cannot understand why this is true.
For example: ${\underset{k\times1}{\underbrace{\left(\underset{k\times k}{\underbrace{\left(X'X\right)^{-1}}}\underset{k\times1}{\underbrace{X'u}}\right)}}\underset{1\times k}{\underbrace{\left(\underset{k\times k}{\underbrace{\left(X'X\right)^{-1}}}\underset{k\times1}{\underbrace{X'u}}\right)'}}}={\underset{k\times k}{\underbrace{\left(X'X\right)^{-1}}}\underset{k\times n}{\underbrace{X'}}\underset{n\times n}{\underbrace{uu'}}\underset{n\times k}{\underbrace{X}}\underset{k\times k}{\underbrace{\left(X'X\right)^{-1}}}}$
To my understanding the far right expression on the RHS should be different.