2

What is a nice proof of $$\cos(A) + \cos( B)= 2\cos\Big(\frac{A+B}{2}\Big)\cos\Big(\frac{A+B}{2}\Big)$$? I can prove it starting with the RHS but i want to be able to quickly prove it starting on the LHS as I won't have access to a formula book when I need it.

Surb
  • 55,662
Robert S
  • 1,144

4 Answers4

4

$$\cos(x+y)=\cos x\cos y- \sin x\sin y$$

$$\cos(x-y)=\cos x\cos y+\sin x\sin y$$

$$\cos(x+y)+\cos(x-y)=2\cos(x)\cos(y)$$

Now let $x+y=A$, $x-y=B$ and you'll get $$\cos A+\cos B=2\cos\left(\frac{A+B}{2}\right)\left(\frac{A-B}{2}\right)$$

user236182
  • 13,324
2

Here is a fast and efficient way forward. We use Euler's Formula to write

$$\cos A+\cos B=\text{Re}\left(e^{iA}+e^{iB}\right) \tag 1$$

Now, simply factor out $e^{i(A+B)/2}$ under the "Real Part" operator in $(1)$ to obtain

$$\begin{align}\text{Re}\left(e^{iA}+e^{iB}\right) &=\text{Re}\left(e^{i(A+B)/2}\left(e^{i(A-B)/2}+e^{-i(A-B)/2}\right)\right) \\\\ &=\text{Re}\left(2\cos\left(\frac{A-B}{2}\right)e^{i(A+B)/2}\right) \\\\ &=2\cos\left(\frac{A-B}{2}\right)\cos\left(\frac{A+B}{2}\right) \end{align}$$

And we are done!

Mark Viola
  • 179,405
  • This is a great solution. It took me a very long time to realize how to do this with Euler's formula. I kept trying to solve this while fully expanding each cosine into the real representation. Leaving it in the complex plane and taking the real part later is a great solution. +1 – akozi Nov 04 '20 at 18:34
  • 1
    @akozi Thank you. Much appreciated. – Mark Viola Nov 04 '20 at 18:40
1

HINT: start from $$\cos(A+B)=\cos(A)\cos(B)-\sin(A)\sin(B)$$ $$\cos(A-B)=\cos(A)\cos(B)+\sin(A)\sin(B)$$

1

From LHS to RHS:

$$ \cos B + \cos A \\ \cos \frac {2 B} 2 + \cos \frac {2 A} 2 \\ \cos\left(\frac {A + B - A + B} 2 \right) + \cos\left(\frac {A + B + A - B} 2 \right) \\ \cos\left(\frac {A + B} 2 - \frac {A - B} 2 \right) + \cos\left(\frac {A + B} 2 + \dfrac {A - B} 2 \right) \\ \left[\cos\left(\frac{A + B} 2\right)\cos\left(\frac{A - B} 2 \right) + \sin\left(\frac{A + B} 2 \right)\sin\left(\frac{A - B} 2 \right)\right] + \left[\cos\left(\frac{A + B} 2 \right)\cos\left(\frac{A - B} 2 \right) - \sin\left(\frac{A + B} 2 \right)\sin\left(\frac{A - B} 2 \right)\right]\\ 2 \cos\left(\frac {A + B} 2 \right) \cos\left(\frac {A - B} 2 \right) \\ $$

cr3
  • 1,491