How to show that
$$\int_0^1\!\! \left(\frac1{\log^2\left(1-x\right)}-\frac1{x^2}+\frac1x-\frac1{12}\right) \frac{\mathrm{d}x}x=\frac{\ln{(2\pi)}}{12}-\frac{5}{24}+\frac{1}{2\pi^2}\sum_{n=1}^\infty \frac{\ln{n}}{n^2}$$ ?
I have no any idea.
Thanks in advance.