There are some special cases. Here's one from Electro Magnetic Wave Guides. Here you can invert a curl by taking the cross product of a curl with a part of which it might be composed.
Let
$\vec{v}=\psi\vec{A}$
$\nabla \times \vec{v}=\nabla\psi\times\vec{A}+\psi\nabla\times\vec{A}$
$\nabla \psi\times(\nabla \times \vec{v})=\nabla\psi(\nabla \psi \cdot \vec{A})-\vec{A}(\nabla \psi)^2+\psi\nabla\psi\times(\nabla \times \vec{A})$
$\vec{A}(\nabla\psi)^2=\nabla\psi(\nabla \psi\cdot \vec{A})-\nabla\psi\times(\nabla \times \vec{v})+\psi\nabla\psi\times(\nabla \times \vec{A})$
$\psi\vec{A}(\nabla \psi)^2=\psi\nabla\psi(\nabla \psi \cdot \vec{A})-\psi\nabla\psi\times(\nabla \times \vec{v})+\psi^2\nabla\psi\times(\nabla \times \vec{A})$
$\vec{v}=\frac{\psi}{(\nabla \psi)^2}[\nabla\psi(\nabla \psi \cdot \vec{A})-\nabla\psi\times(\nabla \times \vec{v})+\psi\nabla\psi\times(\nabla \times \vec{A})]$
If $\vec{A}$ is irrotational, then $\nabla \times \vec{A}=0$.
If $\nabla \psi$ is orthogonal to $\vec{A}$, then $\nabla \psi \cdot \vec{A}=0$
So if those conditions hold, we have :
$\vec{v}=\frac{-\psi}{(\nabla\psi)^2}\nabla\psi\times(\nabla \times \vec{v})$
In a wave guide problem, $\vec{A}$ is usually chosen to represent direction of propagation, often then a vector function of $z$ only and having only a $z$ component. So it's irrotational.
The scalar $\psi$ is chosen to represent some properties of the waves which typically oscillate perpendicularly to the direction of propogation. It is usually just a function of $x$, and $y$ guaranteeing it's gradient is orthogonal to $\vec{A}$.
$\psi$ can be expressed in generic terms, say, requiring it to be a function of x and y. It can be further determined by solving the boundary conditions implied by Maxwell's Laws and the geometry of the wave guide.
The derivatives of $\vec{v}$ are sometimes easier to work with than $\vec{v}$ itself. If determined before hand this inversion process can be used to determine $\vec{v}$.