0

Let $x_n = \sum_{k=1}^{n} \frac{1}{k} - \log n$. Prove that $x_n$ converges as $n \to\infty$.

Clayton
  • 24,751

1 Answers1

4

Hint: A proof without using the integration concepts.

  • Show that $$\frac{1}{n + 1} < \log\left(1 + \frac{1}{n}\right) < \frac{1}{n}. \tag{1}$$ You might need the facts that the sequence $\left(1 + \frac{1}{n}\right)^n$ increasingly converges to $e$ and the sequence $\left(1 + \frac{1}{n}\right)^{n + 1}$ decreasingly converges to $e$.
  • Use $(1)$, show that $$\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n + 1} < \log(n + 1) < 1 + \frac{1}{2} + \cdots + \frac{1}{n}. \tag{2}$$

  • Use $(2)$, show that the sequence $\{x_n'\}$ is increasing and bounded above, where $$x_n' = 1 + \frac{1}{2} + \cdots + \frac{1}{n} - \log (n + 1).$$ Hence $x_n'$ converges.

  • Show that $x_n$ and $x_n'$ have the same limit.

Zhanxiong
  • 14,040
  • Good outline. An alternative route is to show that $x_n' = \int_{1}^{n+1}\left[\frac{1}{\lfloor x\rfloor} - \frac{1}{x}\right]{\rm d}x$ and bound the integrand above to conclude that $x_n'$ converges. – Kibble Dec 01 '15 at 02:25
  • Well done ... +1. – Mark Viola Dec 01 '15 at 03:03